
J .  Fluid Mech. (1981), vol. 103, pp. 321-344 

Printed in Great  Britain 

32 1 

An experimental study of critical layers 

By S. A. THORPE 
Institute of Oceanographic Sciences, 

Wormley, Godalming, Surrey 

(Received 20 February 1980 and in revised form 22 June 1980) 

Laboratory experiments have been made to investigate the development of internal 
gravity waves as they approach a critical layer where their phase speed is equal to that 
of the mean flow. The waves are produced in the accelerating flow of a stratified fluid 
in a long tilted tube in which the lower boundary has sinusoidal corrugations. As found 
in earlier experiments, the waves are not observed to propagate beyond the critical 
layer. Near the layer their amplitude increases, with the development of regions in 
which the fluid is gravitationally unstable. Kelvin-Helmholtz instability is not ob- 
served, perhaps because of viscous effects. 

A model is devised which describes the weakly nonlinear development of the waves. 
This is solved numerically. The results compare favourably with the experiments 
until gravitational instability is imminent. The numerical model is used to estimate 
both the second order Eulerian ‘jet ’, which develops below the critical layer, and the 
Stokes drift. In the cases examined, the maximum drift is stronger than the jet and 
opposite in direction. The numerical model predicts the regions of wave breaking 
quite well. 

Internal gravity waves in the ocean may be modified by transient critical layers, 
for example those caused by vertically-propagating near-inertial oscillations. 

1. Introduction 
The change in the structure of internal gravity waves as they approach a critical 

layer has been a topic of much interest since the effect of critical layers was demon- 
strated by Booker & Bretherton (1967). A critical level is one at which the horizontal 
phase velocity of approaching internal gravity waves is equal to the speed of the mean 
flow, supposed horizontal, although, perhaps more significantly, it is a level a t  which 
the vertical group velocity of packets of infinitesimal waves tends to zero sufficiently 
rapidly that the waves are prevented from propagating further in a vertical direction 
(Bretherton 1966). Singularities of this kind are features common to waves travelling 
in variable media (for others, see Acheson 1976; Peregrine & Thomas 1979; Stewartson 
1978; Grimshaw 1980). 

Analytical and numerical studies, for example those of Hazel (1967), Jones (1968), 
Breeding (1971), Tanaka (1975), Geller, Tanaka & Fritts (1975), F’ritts & Geller (1976), 
Fritts (1978, 1979); McIntyre & Weissman (1978) and Brown & Stewartson ( 1 9 8 0 ~ )  
have done much to clarify the linear, and some of the nonlinear, processes which affeot 
internal gravity waves near critical layers. Linear theory hes been found to describe 
the interaction between the waves and the mean flow if the Richardson number 
exceeds two (Breeding 1971). The importance of critical layer absorption as a process 
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' Fixed sinusoidal flooi 

+ 
FIUTJRE 1. The apparatus; an inclined tube with a corrugated floor. 

in the atmosphere was recognized from the first, and many observations of wave-like 
structures detected by radar or acoustic soundings have been ascribed to the effects 
of critical layers (see for example Merrill 1977; Eymard & Weill 1979; Klostermeyer 
1980). There is however, some confusion in the literature about the distinction between 
waves at  critical layers and the transient waves which develop during shear flow (or 
Kelvin-Helmholtz) instability, and in interpreting observations the features which 
distinguish one from another may be difficult to detect. Munk (1980) has recently 
advocated an assessment of the role of critical layers in relation to the development 
of the spectrum of internal gravity waves in the ocean. 

The precise nature of the flow in the vicinity of a critical layer is however not al- 
together clear, and we know of only two, somewhat cursory, laboratory investigations 
of the phenomenon which have been made (appendix by Bretherton et ul. to the paper 
by Hazel 1967; Thorpe 1 9 7 3 ~ ) .  Both these experiments fall in a range in which Fritts & 
Geller (1976) find that viscous effects are likely to promote the stability of the waves 
at the critical level. 

We have made some further experiments in a tilting tube. The tube is filled with a 
stratified brine solution and flow is generated by tilting the tube away from a hori- 
zontal position. In the earlier experiments, waves were generated in the lee of a small 
triangular obstacle attached to the floor of the tube. In the present experiments the 
floor has a sinusoidal corrugation (see figure 1 ), and the internal waves which develop 
have a, well defined wavelength and are more amenable to theoretical description. 

In  Q 2 we describe the experiments and the development of the waves and in 3 
we discuss, and compare with experiments, a numerical model which includes weakly 
non-linear effects. The value of this comparison is that quantities which may be 
calculated accurately in the model but which are very difficult to measure in the 
experiments (for example, the velocity distribution), can be estimated with some 
confidence provided, of course, that there is agreement between the quantities which 
can be measured in the experiment (in particular, the wave amplitude and phase) and 
those which are predicted by the model. 

As a preliminary we consider the propagation of a packet of internal gravity waves 
in fluid of Brunt-Vaisala frequency, N, in a horizontal shear flow, U(z, t ) ,  2 being 
vertically upwards. We suppose that the W.K.B. approximation is valid so that the 
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group velocity is determined locally. We shall consider the paths of internal gravity 
waves formed as stationary lee waves in an accelerating flow over the sinusoidal flow 
of the tube. 

Following Bretherton ( 1966), the frequency of a two-dimensional internal gravity 
wave of wavenumber (k ,  m )  relative to a fixed frame of reference is 

u = k U - w ,  (1) 

where w is the frequency measured in a frame of reference moving with the local flow; 

Following Garrett (1967, equation (1.8)) 

dald t  = k aU/at,  (2) 

wheredldt = a/&! + c,  . Vis the derivative following a wave packet moving a t  speed c,. 

(3) 

where c, = a w / h  = w2(Na-w2)*/N2k is the vertical group velocity. We take k to 
be the wavenumber of the corrugations in the flow of the tube. In  the laboratory 
experiments described in J 2, N is constant, and we take 

From (1) and (2) and assuming uniformity in the 2 direction we find 

dw/dt = - kCov aU/& 

U(z ,  t )  = N2zt sina, (4) 

corresponding to the flow in the absence of corrugations (Thorpe 1 9 6 8 ~ ) ~  where t is 
the time elapsed after the tube is tilted through an angle a. Hence (3) gives 

dw 
dt 
_ -  - - d ( N 2  - w2))  t sin a, 

which has a solution independent of 

(Na-wZ)* ( 7 2 -  2 ( 1 - L 2 7 q  sin2 a)* 
=- 7 ~ )  sin a + 

kh7, sin a w 2 

= 7 2  -sina+q, Sayl 
2 

where 7 = N t ,  7, = Nt,  and to is the time at which the wave packet originates with 
frequency u = 0 at z = - h, the floor of the tube. Using this solution for w we can 
now find the height z of the wave packet by integrating 

dzldt = c,, 

(q + )+sin a) d7 
to give, using ( 5 )  

- kh, 
[ 1 + (q + 4 7 2  sin a ) 2 ] Q  

where Z = kz, and z = - h when t = to. Integration was made numerically using a 
Runge-Kutta technique with values of kh = 1 and 2 and sin a = 0.1 which correspond 
approximately to the parameters used in the experiments. Figure 2 shows the wave 
paths in the (7,Z) plane. The height of the wave front, a caustic surface, increases 
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FIQURE 2. The paths of wave packets emitted aa locally stationary lee waves at time intervals 
O+N-l from the level of the bottom of the tube for (a) kh = 1.0 and (b)  kh = 2.0, with sina = 0.1. 

with time, waves emitted at later times overtaking their predecessors. Even at T = 18 
the waves are some way from the level z = 0 where the mean flow vanishes. The vertical 
wavenumber of stationary waves at the flow is 

and so for T > (kh sin a)-l, m and cgv become imaginary and waves can nolongerradiate 
from the floor. The rays therefore appear at 2 = - kh only in 0 .c T < (khsin a)-l. 

The Richardson number of the flow is R, = (7 sin a)-l and this eventually becomes 
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small. Figure 2 is strictly valid only for infinitesimal waves of scales much less than 
those of the mean flow and for large mean flow Richardson numbers (Bretherton 1966) 
and may therefore serve only as a rough guide for the experiments. 

In regard to the confusion between critical layer absorption and critical layer in- 
stability, it is pertinent to note that the steady flow of a fluid with constant shear and 
constant BruntrViiisiilii frequency appears to be stable to infinitesimal disturbances 
for all positive values of the Richardson number (Brown & Stewartson 1980b). A 
similar flow which is uniformly accelerating appears also to be stable (Thorpe 1 9 7 8 ~ ) .  

2. The experiments 
The apparatus was a 4.85 m long, 10 cm wide, 16 cm high rectangular tube with 

perspex side walls, which could be rotated about a central horizontal axis normal to 
its length (figure 1). A false floor was placed in the bottom of the tube carrying an 
approximately sinusoidal wave form (it can be seen in figures 3 etc.) made of flexible 
aluminium sheet supported by blocks and screwed to a rigid base plate. The volume 
between the sheet and the plate was med with wax or plasticene. Three different 
corrugated floors were used; two had 16 undulations of 25 cm wavelength and wave 
heights of 0-5 and 1.0 cm, which reduced the mean tube depth to 14.85 and 14.7 cm 
respectively, and a third had 8 undulations of 50 cm wavelength and 1.0 cm height 
which reduced the mean tube depth to 14.7 cm. To aid the removal of air bubbles 
and to reduce the effects of mixing during filling, the tube was flled in a tilted position 
(at about 25 deg to the horizontal) with brine solution to the required density profile, 
normally a constant gradient. Potassium permanganate dye was added during filling 
to mark surfaces of constant density. Once full, the tube was slowly rotated into a 
horizontal position and left until the fluid had settled. A little mixing occurred as the 
density surfaces spread over the corrugated bottom but, with care, this was small. 
Some exchange was possible between the troughs of neighbouring undulations through 
small gaps left between the false floor and the side walls. It was sometimes difiicult to 
exclude all air from the tube, and in several cases a few bubbles trapped beneath the 
false floor were released during the experiment and can be seen in some of the photo- 
graphs (e.g. figure 3) moving along the top boundary of the tube. These were, however, 
small and did not appear to affect the waves to any appreciable extent. 

The experimental conditions were not ideal, for the surfaces of constant density 
were initially horizontal and pools of relatively dense fluid lay in the troughs of the 
corrugated bottom. It was impossible to fill the troughs with a specified density 
gradient. Moreover, because there was no salt flux through the bottom, the density 
gradient at this boundary was zero. The constant density gradient, assumed in the 
analysis of 5 3, was thus not closely maintained below the level of the crests of the 
waves in the corrugated boundary. 

The experiment consisted of sharply tilting the tube through a small angle, initiating 
a shear flow (Thorpe 1 9 6 8 ~ ) .  The development of waves generated by the flow over 
the topography was recorded by a 35 mm camera taking about 3 frames per second 
and a 16 mm cin6 camera at 30 frames per second. The times of tilt and of the 35 mm 
camera frames were recorded by electrical pulses on an ultra-violet recorder. 

Figilres 3 and 4 show photographs of the waves in experiments with constant 
density gradients in which the tube tilt was maintained (figure 3) or in which the tube 
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FIGURE 5. Waves in a flow above 0.5 cm amplitude corrugations ofwavelength 50 em. N = 2.487 
rad 8-1 and a = 5.3 deg. The dyelines are shown at values of Nt (or mean Richardson number) of 
(a) 11.08 (0-96), (a) 21.63 (0.26), (c) 24.27 (0.20). In (c) the surge is entering at the left. 

returned to the horizontal a few seconds after first being tilted (figure 4). In  these and 
other photographs the tube was tilted down at the left and the flow near the floor of 
the tube is to the left, as shown in figure 1. Waves spread vertically away from the 
lower boundary with lines of constant phase tilting into the flow direction, that is 
towards the right. After a few seconds the slope of the dye lines to the right of the 
wave crests became steeper than that to the left, and the dye lines thickened where 
the slope was greatest and narrowed where it was least. The regions of reduced density 
gradient were subsequently advected through the wave pattern in the direction of 
the mean flow, whilst dye lines at higher levels, themselves now distorted by the waves, 
tended to thicken. This process of thickening, advection, and thickening at  higher levels 
led to surfaces inclined at increasingly shallower angles to the horizontal, in which the 
density gradient was reduced and which subsequently appeared to be sites of gravi- 
tational overturn. The upward spread of the waves was arrested near mid-depth and 
there, or slightly below, the dye-line distortion occurred as an almost stationary 
process with gravitational overturn ensuing at  a position almost immediately above 
the troughs of the corrugated floor. Between these sites of instability (and above the 
crests of the corrugations) the dye layers became very thin, and the overall pattern was 
similar to that found in Kelvin-Helmholtz instability at large amplitude (e.g. see 
Thorpe 1971, figure 1 2 4 .  This wave development was found in both kinds of experi- 
ments although it occurred more rapidly when the flow continued to accelerate. The 
phase of the dye lines near the floor became approximately equal to that of the 
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FIGURE 6. Waves above 0.25 cm amplitude corrugations of wavelength 25 cm. (a) N = 2.023 rad 
s-l, a = 7.5 deg, maintained for 3.98 8. Dyelines are shown at Nt = 20.67 with mean flow Richard- 
son number 0.88. (a) N = 2.601 rad s-l, u = 5.1 deg, tube remains tilted. Photo at  Nt = 22.76 at  
mean flow Richardson number 0.24. (0) N = 2.489 r d  s--l, a = 10-3 deg, tube remained tilted. 
Photo at Nt = 17-00 at  mean flow Richardson number 0.11. (d) Waves above 0.5 cm amplitude 
corrugations of wavelength 25 cm. N = 2.674 rads . s-l, a = 10.2 deg, tube remained tilted. Photo 
at N = 16, 15 at mean flow Richardson number 0.12. 

corrugations after a few seconds. Above the mid-depth level, the dye lines remained 
almost level, although slight undulations could be detected (e.g. figure 3i) at later 
times when the flow was allowed to continue acceleration. Small-scale disturbances 
advecting with the flow were seen in the final stages of the experiments. They were 
more prevalent near the lower boundary and possibly arose from an instability of the 
flow in the boundary layer where at this time the Reynolds number was large. The 
flow was eventually interrupted by the arrival of surges which propagated from the 
ends of the tube. Gravitational overturn is seen in figure 4 even though the mean flow 
Richardson number was greater than 0.26. Indeed it occurred in a region in which the 
second-order mean flow (see Q 3) tended to reduce the shear. 
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Figure 5 shows the development of waves in an accelerating flow when the wave- 
length is 50 cm. The appearance of the waves is similar to that of figures 3 and 4, 
although the thickness of the unstable regions is increased. Figure 6 shows some other 
examples in accelerating flows, or flows in which the tube was returned to the hori- 
zontal, and at  smaller mesn flow Richardson numbers. The waves which can be seen 
near the upper boundary in figure 6 (d )  appeared to have originated locally although 
their wavelength was similar to that of the corrugations. Figure 6(c) shows simul- 
taneous overturning a t  several levels. 

3. Theory and numerical solutions 
3.1. The governing equations 

We consider the flow in the laboratory tube after it has been tilted at time t = 0 
through an angle a. We neglect the effects of viscosity and diffusion, assume that the 
Boussinesq approximation is valid, that the flow is two dimensional, and that the tube 
is of great length, so that the effects of the surges can be neglected. 

The equations of motion are: 

where the density is po(0) (1 - N2z/g + p) ,  U = N2tz sin a ,  $ is the stream function of 
the 'perturbed' flow and the axes x and z are taken as in figure 1. The perturbed'flow 
is that caused by the presence of the corrugated floor and we shall suppose that it is 
small in comparison with U so that $ and p may be expanded in terms of a small 
parameter E 

= + s"2 + . . . , p = €pl + s2p2 + . . . . ( 10) 

The boundary conditions are 

and 
U+- a@ - a7 = -- a$ at z =  -h+q(x),  ( a z )  ax ax 

where q is the equation of the corrugated floor, 

q = ax exp ikx,  

where real parts are to be taken and a is a real constant. 

ducing the non-dimensional variables q5, r where 
Retaining only terms of ordei 8,  we look for a solution for $, p periodic in x by intro- 

(13) 
N N2 

gk @l = $(A, 7 )  exp iX, p1 = - r ( 2 , ~ )  exp iX, 

with ( X ,  2) = (kz, kz) and 7 = N t .  Substituting in (8), (9), we find 

1 a 
($+izTsina e+ sina--icosa r = 0, 1 ( a2 
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and 

where 

e =  (&-i)q5. 

These equations were derived elsewhere (Thorpe 1 9 7 8 ~ ) .  The boundary and initial 
conditions however differ. The boundary conditions are now 

q 5 = O  at Z = k h  

and q5 = -AZrsina at Z = -kh, 

where A = ak. (The latter condition implies that the net volume flux across a vertical 
section calculated to order e is zero). 

Numerical solutions of the equations (14), (15), with appropriate initial values, 
$ = p = 0, have been obtained following the method described by Thorpe ( 1 9 7 8 ~ ) .  
Using (15) to determine r ( Z , r + A r )  after a small time-step AT and then (14) to find 
O(2, r + A7), (16) may be solved using a shooting method with the boundary conditions 
(17), (18) to give q5 a t  r + AT. Solutions were found for conditions corresponding 50 
the laboratory experiments (see § 3.4). Whilst these provide an accurate description 
of the density field at  small times, discrepancies are apparent a t  r N 8 when the 
Richardson number of the mean flow was about 1.5, and the density surfaces are no 
longer sinusoidal (see figure 3). To investigate the development of harmonics forced 
by non-linear terms we return to (8), (9), and retain terms of order €2, giving equations 
for $2, P2. 

The governing equations can now be written 

and 

where 

0 = (&-4)q52, 

(21) 
N2 

p2 = gk [rz(Z, 7 )  exp 2 ix  + r.o(Z, 711 

and U.. = aq5,,/aZ is the Eulerian-mean second-order flow and F ( r )  is a yet unspecified 
function of r.  Real parts of $2, p2 are to be taken and * represents complex conjugates. 
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The boundary conditions are 

and 
q52 = 0 a t  Z = kh, 

A % .  Aa$ 
2 az sma--- a t  Z =  -kh. $2 = -4 

These equations can be solved using the same numerical procedure as before calling, 
at each time step, on the first order solution when calculating the terms which appear 
on the right hand side of the equations. I n  modelling the experiments in which the 
tube is returned to a horizontal position (at time to say) the terms including T sin a 
became constant with 7 equal to  Nt,, and elsewhere a is made equal to  zero. 

We now consider the appropriate way to  specify F(T)  and to  find the function of Z 
which arises when (20) is integrated. 

3.2. MeanJEow and density fields 

I n  the laboratory experiments the volume flux across any vertical plane normal to 
the tube axis must, by continuity, be zero since the tube is closed a t  the ends. A non- 
zero flux would imply that the volume between the plane and an end wall was changing. 
The average volume flux is 

(22) 

Performing the integration and using the boundary condit,ions ( l l ) ,  (12), we find, 
correct to  order e2, 

A a$ kh r 
U2dZ = 4 -A2sina+--(-kh). 2 az 1- kh 

But using equation (18) 

aq5 I k h  2 dZ = i 2 khA7 sin a - az + 2khF(7), 
- kh 

and hence 

8kh 

(23) 

(24) 

evaluated a t  Z = - kh. In the laboratory experiments, the flow is initially a t  rest and 
so (18), with (24), is to  be solved with U, = 0 at r = 0. 

We can find the relevant solution of (20) by the following argument. Consider now 
the wave displacement, C(x,z,,t), a t  level z,. This is found by specifying that the 
surface z,+ 5 shall be one of constant density (Thorpe 19783). Using the expression 
for the density below (9) we find 

Q = & ( c l g + P 2 )  (27) 
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For an infinite tube, or a finite one before the surges arrive from the ends, we expect 
the volume of fluid lying below a given density surface in the middle section of the 
tube to be conserved. Then = 0 and (13), (26) and (27) imply that 

Differentiating (28) with respect to 7 and using (15), we see that (28) satisfies (20), 
and the initial condition of no disturbance (implying p1 = p, = 0 initially). This 
checks the correctness of (28). 

The equations (26), (27) serve to define the surfaces of constant density, the dye 
l i e s  in the laboratory experiments. 

3.3. Mean drift 

Internal waves generate a second-order Stokes drift which has been estimated and 
observed in laboratory experiments (Thorpe 19683). Here we estimate the drift 
associated with waves caused by the accelerating flow over the sinusoidal floor. Rela- 
tive to the frame of reference fixed in the floor, the co-ordinates of a particle in the flow 
described in (3.1) may be written 

x = iN2z0t sin01 + X, + €2, + € 2 ~ ~  + . . . 
z = z,+€z,+€~z,+ ..., (30) 

(see Thorpe 1978b) where x,, x,, zl, z,, . . . are functions of x,, zo and t .  The speed of the 
particle is given by 

(31) _ -  - N 2 t z s i n a + ~ ~ l , , + e 2 ~ 2 , z +  ..., dx 
dt 

evaluated a t  x, z. Transferring to non-dimensional co-ordinates X, = kx,, 2, = kz,, 
these equations give, to order e: 

(;+iz,7sina 1 zl= -i+, (34) 

where 
kx, = X,(Z,, 7 )  exp i& 

kz, = Z,(Z,,  7 )  exp if, 
and 

whilst to order €2: 

5 = X 0 + ~ 2 , 7 ~ s i n a ,  
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and real parts are to be taken. The initial displacements are zero. 
Equation (36) now gives the wave contribution to the Lagrangian drift speed. It 

contains the Eulerian drift contribution U, and supplementary terms corresponding 
to the Stokes drift. 

3.4. Comparison with experiments 

The wave displacements (26), (27), have been calculated for the conditions and scales 
appropriate to the experiments and, for comparison, are shown in figures 3 and 4, 
correct to orders E and 8. The early development of the waves, and their later phase 
and amplitude are well described by linear (order 6) theory. The waves appear to 
propagate vertically more rapidly than predicted by figure 2. In the JWKB approxi- 
mation equation (6) shows that the vertical wave number, m, of the waves becomes 
small and then imaginary as 7 increases, so that the lines of constant phase will tend 
to become vertical near the lower boundary, as indeed observed. The vertical group 
velocity cgv, also becomes imaginary, (7) implying that waves cannot continue to be 
radiated vertically away from the boundary. There is some evidence in the photo- 
graphs that in the vicinity of the boundary the wave amplitude decreases, which is 
also consistent with m becoming imaginary giving an exponential decrease in wave 
amplitude with height. 

When the mean flow Richardson number falls below about 1.5 the waves become 
distorted from the sinusoidal, linear solution, profile. The second-order ( E , )  terms 
account for much of this distortion until the mean flow Richardson number falls 
below about 0.5 in the accelerating flow or until gravitational overturn becomes 
imminent. We have used the numerically calculated stream function and density to 
estimate the local Richardson in the flow (as in Geller et al. 1975). The regions in 
which this is less than 0.25 or zero are shown in figures 3 and 4. The regions lie in 
places where the dye lines are thickened; regions of high density gradient have rela- 
tively large Richardson numbers. The onset and position of gravitational overturn 
are surprisingly well predicted by the model. This suggests that the development of 
high harmonics in the final stages of overturn occurs very rapidly and locally in those 
parts of the flow in which the density gradient has already been significantly reduced 
by the f i s t  and second-order effects. The low Richardson number regions are tilted, 
about 1 em thick, and negative values of Richardson number are found near the upper 
edge of the regions in which the Richardson number is less than 0-25, a feature found 
by Fritts (1978) in his numerical computations. In  the last stages of development 
followed in the laboratory experiments gravitational overturn can be seen simul- 
taneously a t  several levels well below the mid-depth of the tube and this pattern is 
reflected in the numerical computations.t 

t It seem likely, referring to figure 2, that this effect may be due to internal wavm generated 
during acceleration, which fhd their critical levels well below the level z = 0. Caution is needed, 
however, in interpreting figure 2 beoame of the invalid JWKB approximation. 
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FIGTJRE 7. Mean second order Stokes drift (solid line) and Eulerian mean second-order flow 
(dashed) corresponding to conditions of (a) figure 3 at  Nt = 14.52, (b) figure 4 at  Nt = 14.00. 

The calculated mean second-order Eulerian flow is shown in figures 3 and 4. In the 
later stages of development of the waves it is dominated by a ‘jet’ just below the 
critical layer directed against the mean flow a t  that level. The occurrence of such jets 
and their effects on the critical layer have been discussed by Breeding (1971) and 
F’ritts (1978). The estimated strength of the jets is quite small and it was not possible 
in the experiments to measure the x-averaged velocity with sufficient accuracy to 
resolve the jet in the presence of the large mean shear flow and waves. The large flows 
near the lower boundary which appear in the numerical calculations result from the 
initial conditions there (see f 3.2). 

The Stokes second-order drift has also been calculated (from 36), and this is shown 
in figure 7, together with the mean second-order Eulerian flow. The sum of the 
Eulerian-mean flow and Stokes drift gives the Lagrangian-mean flow, and this differs 
considerably from the Eulerian-mean flow, the jet being significantly modified and 
the upper part reversed by the Stokes drift. The maximum Stokes drift is in the same 
direction as the flow U below the critical layer. This is a feature reminiscent of the 
sense of maximum drift in gravity waves of first mode in a hyperbolic tangent density 
profile and zero mean flow, or of the drift near the maximum displacement of first 
mode waves in a constant density gradient and zero mean flow (Thorpe 19683) when 
the drift is opposed in direction to the phase speed of the waves. Here the local phase 
speed relative to the mean flow is to the right, whilst the relative maximum drift is 
to the left, and again the two are opposite in direction. The Stokes drift is anomalous 
close to the floor of the tube since particles which originate near the bottom of the 
troughs of the corrugations (z,, = - h - I q I a t  t = 0) and approximately follow their 
shape will, in the mean, have a net upwards displacement (&,, =/= 0). They are trans- 
ferred, on average, into a region where the mean flow is less and will, on this account, 
have a smaller total drift than that appropriate to their level of origin. 
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4. Discussion 
4.1. Viscous eyffeects 

The experiments and numerical model show that the critical layer inhibits the vertical 
propagation of waves even a t  low Richardson numbers and that gravitational insta- 
bility is found even when the mean-flow Richardson number is about one. No Kelvin- 
Helmholtz instability was observed in the experiments. This may have been due to 
the particular density and velocity profile chosen (which, as we remarked in the intro- 
duction, is probably stable even a t  small Richardson numbers), or to the slow growth 
of the instabilities in the wave-distorted velocity and density fields, or to viscosity, 
ignored in the computations. Hazel (1967) examined the effect of viscosity on the 
basic critical-layer problem and found it to be important to a distance about 

5 [ v / ( k  au/az)]4 

below the critical layer, where v is the kinematic viscosity. This thickness is 1-10 cm 
when the mean flow Richardson number was 0-5 for the conditions of figure 3, whilst 
for those of figure 4 it is 1-23 cm. Although Hazel’s theory is for steady flow and the 
depth range of viscous influence does not overlap fully with the tilted regions in which 
the local Richardson number is small, the fact that the length scales are similar suggests 
that, as in the earlier experiments, viscosity may inhibit Kelvin-Helmholtz instability 
near the critical layer (Fritts & Geller 1976). Even in the experiment of figure 5 with 
increased wavelength, where the region in which the Richardson number was less 
than 0.25 was calculated to be 2.0 cm in depth and the viscous layer 1-4 cm thick a t  
a mean flow Richardson of 0.5, it  is possible that Kelvin-Helmholtz instability was 
suppressed by viscous effects.? The general agreement between the experiments and 
numerical computations suggests, however, that viscosity does not significantly affect 
the displacement field. 

4.2. Related experiments 

Some experiments were made with density and velocity profiles containing narrow 
gradient regions between uniform layers. These flows are known to be unstable when 
the mean flow Richardson number is less than one quarter, and it was hoped that 
Kelvin-Helmholtz instability might be excited near the critical layer by waves when 
the mean flow itself was stable to infinitesimal disturbances. An asymmetrical profile 
(thin lower layer) of density was chosen so that if Kelvin-Helmholtz instability 
occurred it would not only have an expected scale different from the boundary undu- 
lations, but would be a propagating disturbance (e.g. see Thorpe 1973b, figure 13 and 
text). Figure 8 shows a flow with a density gradient, marked by three layers of dye, 
between two homogeneous layers. The tube was tilted for only 3.30 s after which the 
minimum ‘undisturbed’ mean flow Richardson number was 0.627, and the mean 
flow was thus stable. Waves developed and ‘broke’ near the critical layer in the 
density gradient region. (It is interesting to compare this with the breaking of pre- 
existing internal waves in an accelerating shear flow shown in figure 7, Thorpe 1978a.) 
Small-scale waves which may be due to Kelvin-Helmholtz instability can be seen in 

t Professor 0. M. Phillips h a  shown me a film of his experiments in 8 continuously stratified 
water tunnel in which billows resulting from Kelvin-Helmholtz instability can be seen in the 
vicinity of the critical layer. 
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FIQURE 8. Waves in a three-layer fluid over 0.5 cm amplitude mmgations of length 60 om. 
Upper and lower fluids are of uniform density and the density gradient in the middle layer is 
almost uniform with N = 4.19 red 8-1. The tube was tilted through 6-2 deg from 3.30 s giving a 
minimum mean flow Richardson number of 0.83. Photographs are at time (a) 4.77 8 ,  (b)  7.23 s, 
(0) 9.70 s and (d) 12.18 8. 

the lower due line in figure 8 (d),  but occur only after the gravitational overturn near 
the critical layer. 

An example with two density interfaces is shown in figure 9. In  this experiment the 
density profile was measured by a single-electrode conductivity probe before the tube 
was tilted, and the Richardson numbers quoted in the figure caption were calculated 
from the estimated mean flow (Thorpe 1 9 6 8 ~ ) .  The experiment shows the develop- 
ment of a variety of scales a t  low Richardson number in an accelerating flow. The 
critical layer was in the upper interface, flow below this level being to the left. Waves 
grew first at the lower interface, their crests being slightly to the right of the corru- 
gation crests (a),  but then the two became approximately in phase and a small region 
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FIGURE 10. Numerical model of flow with V = -0.864, kh = 1.85, A = 0.126, a = 0.09 rads at  
times Nt:  (a) 2.94, ( 6 )  8.74, (c) 14.55, ( d )  17.45, (e) 20-35, showing linear (order E )  solutions and 
hatched regions of negative density gradient. The level of the critical layer is shown by the arrows. 

of overturning appeared a t  the wave crests ( b ) .  This region advected to the right, 
through the waves, being amplified when it reached the succeeding wave crest (c). 
Soon thereafter secondary waves, about one third of the length of the corrugations 
(and seven or eight times the interface thickness) grew between the sites of the initial 
instability (d) ,  developing in the familiar pattern of Kelvin-Helmholtz ‘billows ’. 
Waves a t  the upper interface appeared soon after the first signs of overturn at the 
lower interface, and were 180 deg out of phase with the corrugations on the floor. 
These waves became larger than the waves on the lower interface end overturning 
occurred a t  their troughs (c). The crests were much flatter than the troughs (d),  and 
on the crests small billows developed (e) which grew as they moved to the right. Flow 
eventually became highly disordered (f ). 

FIQURE 9. Waves in a three-layer fluid over 0.6 cm amplitude corrugations of length 25 cm. 
The layers are uniform and the density difference between neighbowing fluids is equal to 0.0444 g 
cm-3. The upper layer is twice the thickness of the two lower layers, which are of equal depth, 
and some diffusion has occurred between layers. Photographs are at  the following times (the 
mean-flow Richardson numbers are given in brwkets for the upper end lower interfaces respec- 
tively): (a) 3.08 s (0.231,0.272), (6) 4-64 s (0.102,0-120), (c) 6.19 s (0-057,0.067), ( d )  7.36 s (0.040, 
0*048), (e) 8.83 s (0.030, 0-035) and (f )  9-70 s (0.023, 0.027). 
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4.3. Oceanographic applications 
The importance of critical-layer effects on the spectrum of internal gravity waves in 
the ocean has yet to be established (Munk 1980). It is likely, however, that inertial 
waves modify the internal wave spectrum by producing critical layers. There is 
evidence that near-inertial waves are generated near the sea surface by wind (Pollard 
& Millard 1970), and spread downwards through the water column (their phase speed 
is however upwards) producing transient regions of local shear across which the 
velocity difference is large. These are illustrated very clearly in Sandford’s (1975) and 
Rossby & Sandford’s (1976) vertical profiles of current. When the front of an inertial 
wave group arrives, pre-existing free internal gravity waves with sufficiently large 
horizontal phase speed will interact with the flow generated by the inertial waves, 
be modified by the shear, and may break if their particle speeds exceed the modified 
phase speed (Thorpe 1978a, b )  but will not encounter critical layers. Those waves 
with small phase speeds, for example those which are topographically generated or 
which, through the nature of their forcing, are locked to low horizontal speeds, will 
eiicounter critical layers produced by the relatively larger horizontal currents of the 
inertial waves and be subjected to the effects discussed above. 

It is beyond the scope of this paper to discuss these, or other wave-wave critical- 
layer interactions in detail, but to illustrate their nature a numerical experiment was 
made to examine the effect of a transient, vertically propagating critical layer. An 
initial wave was set up by passing z-independent flow, U,, over the sinusoidal floor 
of the tube. A uniformly accelerating shear flow was then superimposed so as to give 
a basic flow U = U, + Nztz sin a. The appropriately modified linearized equations are 
given in the appendix. For U, < 0 the mean flow over the corrugated floor is initially 
entirely in the negative z-direction, but when t > - U,/(N2h sin a) there is a region 
near the top of the tube in which the flow is positive. A critical layer exists at height 
z = - U,/(N2t sin a), descending towards z = 0 as t increases. Large waves are found 
in the neighbourhood of the critical layer (figure 10) with a variable field of relatively 
high vertical wave-number waves above the layer. The transcience of the layer does 
not inhibit wave amplification in its vicinity. 

The effects of transient or vertically propagating critical layers and their geo- 
physical significance deserve further study. 

It is a pleasure to acknowledge the assistance of Mr M. Bray in making the laboratory 
experiments. I am indebted to Dr M. E. McIntyre and Mr D. Broutmann for bringing 
to my attention errors in the first draft. 

Appendix 
Consider the effect of moving the corrugated flow of the laboratory tube to the left 

at uniform speed U ,  providing a steady wave pattern, before the tube is fitted. This is 
equivalent to having initially a uniform flow over a stationary boundary. Subsequently 
the flow distorts. Choosing axes moving with the floor U = U, + Nztz sin a, and equa- 
tion (14), (15) become 

[ $ + i ( ~ + ~ T s i n a )  I e+ ( sina--icosa ” r = o 



Critical layers 

and 

where V = U,k/N, with boundary conditions 

$ = 0 at 2 = kh, 
$ =  - A ( V + Z T S h a )  at Z =  -kh.  

The appropriate initial conditions can be found by putting a/& = 0 and a = 0 in 
(A 1) and (A 2). Solving these we find 

q5= - A V f ( V , Z ) ,  r =  -$ /V ,  
where 

with 
siny, y = ( l - q 2 ) 4 / V ,  if 

if 
sinhy, y = ( q % - l ) f / V ,  if 

We assume that the denominator of the expression for f is 
waves are excluded. 
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